The prevalence of metabolic syndrome caused by diets containing excessive fatty acids is increasing worldwide. Patients with metabolic syndrome exhibit abnormal lipid profiles, chronic inflammation, increased levels of saturated fatty acids, impaired insulin sensitivity, excessive fat accumulation, and neuropathological issues such as memory deficits. In particular, palmitic acid (PA) in saturated fatty acids aggravates inflammation, insulin resistance, impaired glucose tolerance, and synaptic failure. Recently, adiponectin, brain-derived neurotrophic factor (BDNF), and glucose-like peptide-1 (GLP-1) have been investigated to find therapeutic solutions for metabolic syndrome, with findings suggesting that they are involved in insulin sensitivity, enhanced lipid profiles, increased neuronal survival, and improved synaptic plasticity. We investigated the effects of adiponectin, BDNF, and GLP-1 on neurite outgrowth, length, and complexity in PA–treated primary cortical neurons using Sholl analysis. Our findings demonstrate the therapeutic potential of adiponectin, BDNF, and GLP-1 in enhancing synaptic plasticity within brains affected by metabolic imbalance. We underscore the need for additional research into the mechanisms by which adiponectin, BDNF, and GLP-1 influence neural complexity in brains with metabolic imbalances.
Citations
Depression is the most prevalent psychiatric disorder experienced by the world's population. Mechanisms associated with depression-like behavior have not been fully investigated. Among the therapeutic solution for depression, exercise is considered an important regulator attenuating depressive neuropathology. Exercise has been reported to boost the secretion of myokines such as irisin and myostatin in skeletal muscles. Myokines secreted during exercise are involved in various cellular responses including the endocrine and autocrine systems. Especially, irisin as a cleaved version of fibronectin domain-containing protein 5 has multiple functions such as white fat-browning, energy expenditure increase, anti-inflammatory effects, and mitochondrial function improvement in both systemic circulation and central nervous system. Furthermore, irisin activates energy metabolism-related signaling peroxisome proliferator-activated receptor-gamma coactivator-
Citations