Previous studies have suggested that omega-3 polyunsaturated fatty acids, predominantly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have several health benefits. However, their effect on changes in skeletal muscle mass and strength has not been established, owing to differences in study designs. This systematic review aimed to investigate the recent evidence regarding the role of dietary EPA and DHA in muscle mass changes and their association with muscle strength. Databases including PubMed and Google Scholar were searched for randomized controlled trials and single-arm interventions that investigated the effects of omega-3 fatty acids on skeletal muscle mass, strength, and body composition in adults aged 18 years and older. A total of 18,521 studies were retrieved from the databases and manual searches; 21 studies were quality assessed, and the findings were summarized. Studies were categorized into 3 main categories according to the type of omega-3 fatty acid supplementation: pure compounds such as oil tablets, formulated forms with protein, leucine, and vitamin D, and ingredients added to enteral nutrition support products. Overall, the majority of the study results appeared to indicate that omega-3 fatty acids are beneficial for muscle health. However, meta-analysis was not conducted because of the heterogeneity of the study participants, evaluation method of muscle indices, and intervention periods among the studies. High-quality studies are required to validate our conclusions. However, this systematic review of the effects of EPA and DHA on skeletal muscle and body composition provides evidence that can be applied in both clinical and industrial settings.
Citations
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Citations
Colorectal cancer is the third most common cause of cancer related death in the world. Multiple lines of evidence suggest that there is an association between consumption of dietary fat and colon cancer risk. Not only the amount but also the type and the ratio of fatty acids comprising dietary fats consumed have been implicated in the etiology and pathogenesis of colon cancer. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been known to inhibit development of colon cancer by downregulating the expression of genes involved in colon carcinogenesis and also by altering the membrane lipid composition. Data from laboratory, epidemiological, and clinical studies substantiate the beneficial role of n-3 PUFAs in preventing colitis and subsequent development of colon cancer. In addition, recent studies suggest that some n-3 PUFAs can be effective as an adjuvant with chemotherapeutic agents and other natural anticancer compounds in the management of colon cancer. In this review, we discuss chemopreventive and therapeutic effects of fish oil derived long chain n-3 PUFAs, particularly EPA and DHA, with focus on synergetic effects of which they exert when combined with chemotherapeutic agents and other natural compounds.
Citations
Eicosapentaenoic acid’s metabolism of 15-LOX-1 promotes the expression of miR-101 thus inhibits Cox2 pathway in colon cancer
Coffee enemas are believed to cause dilatation of bile ducts and excretion of bile through the colon wall. Proponents of coffee enemas claim that the cafestol palmitate in coffee enhances the activity of glutathione S-transferase, an enzyme that stimulates bile excretion. During video capsule endoscopy (VCE), excreted bile is one of the causes of poor preparation of the small bowel. This study aimed to evaluate the feasibility and effect of coffee enema for preparation of the small bowel during VCE. In this pilot study, 17 of 34 patients were assigned to the coffee enema plus polyethylene glycol (PEG) 2 L ingestion group, whereas the 17 remaining control patients received 2 L of PEG only. The quality of bowel preparation was evaluated in the two patient groups. Bowel preparations in the proximal segments of small bowel were not differ between two groups. In the mid and distal segments of the small intestine, bowel preparations tend to be better in patients who received coffee enemas plus PEG than in patients who received PEG only. The coffee enema group did not experience any complications or side effects. Coffee enemas may be a feasible option, and there were no clinically significant adverse events related to coffee enemas. More prospective randomized studies are warranted to improve small bowel preparation for VCE.
Citations