The present systematic review and meta-analysis were conducted in order to investigate the effects of capsinoids and fermented red pepper paste (FRPP) supplementation on lipid profile. Relevant studies were identified by searches of five databases from inception to November 2021 using relevant keywords. All clinical trials investigating the effect of capsinoids and FRPP on total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were included. Out of 1,203 citations, eight trials that enrolled 393 participants were included. Capsinoids and FRPP resulted in a significant reduction in TC (weighted mean differences [WMD], −9.92 mg/dL; 95% confidence interval [CI], −17.92 to −1.92; p = 0.015) but no significant changes in TG (WMD, −19.38 mg/dL; 95% CI, −39.94 to 1.18; p = 0.065), HDL-C (WMD, 0.83 mg/dL; 95% CI, −0.76 to 2.42; p = 0.305) and LDL-C (WMD, −0.59 mg/dL; 95% CI, −4.96 to 3.79; p = 0.793). Greater effects on TC were detected in trials performed on duration lasting less than twelve weeks, mean age of > 40, both sexes, and sample size of > 50. TG was reduced by using FRPP in studies conducted on mean age of > 40. HDL-C increased by using FRPP in studies conducted on duration of < 12 weeks, mean age of > 40, and sample size of ≤ 50. Overall, these data provided evidence that capsinoids and FRPP supplementation has beneficial effects on TC but not TG, HDL-C, and LDL-C.
Citations
This study aimed to investigate if glycated hemoglobin (HgbA1C) as compared to fasting blood glucose is better for reflecting cardiometabolic risk in non-diabetic Korean women. Fasting glucose, HgbA1C and lipid profiles were measured in non-diabetic women without disease (n = 91). The relationships of fasting glucose or HgbA1C with anthropometric parameters, lipid profiles, and liver and kidney functions were analyzed. Both fasting glucose and HgbA1C were negatively correlated with HDL-cholesterol (r = -0.287, p = 0.006; r = -0.261, p = 0.012), and positively correlated with age (r = 0.202, p = 0.008; r = 0.221, p = 0.035), waist circumference (r = 0.296, p = 0.005; r = 0.304, p = 0.004), diastolic blood pressure (DBP) (r = 0.206, p = 0.050; r = 0.225, p = 0.032), aspartate transaminase (AST) (r = 0.237, p = 0.024; r = 0.368, p < 0.0001), alanine transaminase (ALT) (r = 0.296, p = 0.004; r = 0.356, p = 0.001), lipid profiles including triglyceride (r = 0.372, p < 0.001; r = 0.208, p = 0.008), LDL-cholesterol (r = 0.315, p = 0.002; r = 0.373, p < 0.0001) and total cholesterol (r = 0.310, p = 0.003; r = 0.284, p = 0.006). When adjusted for age and body mass index, significant relationships of DBP (r = 0.190, p = 0.049), AST (r = 0.262, p = 0.018), ALT (r = 0.277, p = 0.012), and HDL-cholesterol (r = -0.202, p = 0.049) with HgbA1C were still retained, but those with fasting glucose disappeared. In addition, the adjusted relationships of LDL-cholesterol and total cholesterol with HgbA1C were much greater than those with fasting glucose. These results suggest that glycated hemoglobin may be a better predictor than fasting glucose for cardiometabolic risk in non-diabetic Korean women.
Citations