The purpose of this study was to investigate whether elective course work based nutrition education in university can change students' body composition and eating habits associated with obesity and its related health risk in first-year college students. A total of 38 students agreed and participated in the study. Participants received a series of lecture about obesity, weight management, and concepts of nutrition and food choices for 13 weeks. The students' BMI and body composition, including body fat and muscle contents, were measured. A 24-hour diet recall for two days was performed for food intake analysis, and the questionnaires for dietary behaviors were collected at the beginning and the end of the study. Paired t-test and χ2-test were used for statistical analysis. Data showed that most of the anthropometric parameters including body weight were not significantly changed at the end of the coursework. Interestingly, skeletal muscle contents in both obese (BMI ≥ 23) and lean (18.5 ≤ BMI ≤ 22.9) subjects were significantly increased. Total energy intake was decreased in total subjects after the study. Also, general nutrition behavior of the subjects including enough hydration and utilization of nutrition knowledge were significantly improved during the study period. The total number of responses to doing aerobic exercise was slightly increased after the study, but the average frequency of exercise in each individual was not changed. These results suggest that class-work based nutrition education on a regular basis could be a time and cost effective method for improving body composition and nutritional behavior in general college students.
Citations
Manganese (Mn) is an essential micronutrient for human and plays an important role as a cofactor for several enzymes involving fatty acid synthesis, hepatic gluconeogenesis, and oxidative stresses. Also, Mn intake status has been reported to have beneficial effects in reversing metabolic dysfunction including obesity and nonalcoholic steatosis which is linked to mitochondrial dysfunction and oxidative stresses, however, information on dietary Mn intake in Koreans are limited. Hence we investigated the relationship between dietary Mn intake and antioxidant defense factors in healthy and obese subjects. Total of 333 healthy subjects were recruited in the study and were assigned to one of three study groups: a normal group (18.5-22.9), a overweight group (23-24.9), and a obesity group (>25) according to their body mass index (BMI). We assessed Mn intakes (24-hr recall method) and several indicators for antioxidative defenses such as glutathione (GSH), glutathione peroxidase (GPx) and urinary malonaldehyde (MDA). Results showed that body weight and blood pressure of study subjects were increased in dependent of their BMI (p < 0.01). However dietary Mn intakes and oxidative stress biomarkers (GSH, GPx, and MDA) were not significantly different by groups defined by BMI. In correlation analysis adjusting for age, sex and energy intake, dietary Mn intake of the subjects in different BMI categories were not significantly correlated with GSH, GPx, MDA and showed a weak or no association with these oxidative stress markers. In conclusion dietary Mn intake at least in this study has a little or no influence on markers of oxidative status in both healthy and obese subjects.
Citations